Faculty of Engineering and Technology
 Electrical and Computer Engineering Department

First Semester 2021/2022
Course 539: Special Topics: Information Retrieval and Web Search
Instructor: Dr Adnan Yahya. Midterm Exam
Time: $\mathbf{8 0}$ minutes max
Please answer the following questions using the exam sheets only.
Question 1 ($\mathbf{2 1 \%}$): Consider that our document

Question	Q1	Q2	Q3	Q4	Q5	Total
ABET outcome	e	a	e	a		
Max grade	21	20	21	20	21	103
Earned						

D1: "large fast program"
"برنامج سريع كبير
D2: "large large fast train" قطار سريع كبير كبير
D3: "slow program" برنامج بطيء
For all the documents, calculate the tf scores for all the terms in S. Order the terms in the vectors alphabetically. Compute idf values with no log and ignore normalization for terms and values. Given the following query:
Q: "fast train program", برنامج قطار سريع

1. 9% : Complete the following table for these documents and Query. Sort Terms alphabetically:

Answer:

Word \quad df	Idf= N/df= //df	D1 tf \downarrow tf.idf	D2 tf \downarrow tf.idf	D3 tf \downarrow ff.idf	Q tf \downarrow ff.idf	
W1 fast	$\mathbf{2}$	$3 / 2$	$1: 3 / 2$	$1: 3 / 2$	$0: 0$	$1: 3 / 2$
W2 large 2	$3 / 2$	$1: 3 / 2$	$2: 3$	$0: 0$	$0: 0$	
W3 program	2	$3 / 2$	$1: 3 / 2$	$0: 0$	$1: 3 / 2$	$1: 3 / 2$
W4 slow	$\mathbf{1}$	$3 / 1$	$0: 0$	$0: 0$	$1: 3$	$0: 0$
W5 train	$\mathbf{1}$	$3 / 1$	$0: 0$	$1: 3$	$0: 0$	$1: 3$

2. 9% : Rank D1, D2 and D3 with respect to the query \mathbf{Q} according to the cosine metric and tf.idf. Explain why. Answer:
|Q|=SQRT $(9 / 4+9 / 4+9)=\operatorname{SQRT}(27 / 2)=3.67$;
|D1|=SQRT $(9 / 4+9 / 4+9 / 4)=\operatorname{SQRT}(27 / 4)=2.6$
|D2|=SQRT $(9 / 4+9+9)=\operatorname{SQRT}(81 / 4)=9 / 2=4.5$
|D3|=SQRT $(9 / 4+9)=\operatorname{SQRT}(45 / 4)=3.35$
Answer:
$\operatorname{Sim}(\mathrm{Q}, \mathrm{D} 1) /\left(|\mathrm{Q}|^{*}|\mathrm{D} 1|\right)=(9 / 4+9 / 4) /\left(3.67^{*} 2.6\right)=(9 / 2) /\left(3.67^{*} 2.6\right)=0.47-------($ Rank:2)
$\operatorname{Sim}(\mathrm{Q}, \mathrm{D} 2) /(|\mathrm{Q}| * D 2 \mid)=(9 / 4+9) /(3.67 * 4.5)=11.25 / 3.67 * 4.5=0.68-----($ Rank:1)
$\operatorname{Sim}(\mathrm{Q}, \mathrm{D} 3) /(|\mathrm{Q}| * D 3 \mid)=(9 / 4) /(3.67 * 3.35)=4.5 / 3.67^{*} 1.5=0.18---------($ Rank:3)
3. 3\% Give three possible words to extend the query برنامج قطار سريع for better recall.

Example: جدول تراين اكبرس [example: many others possible: add terms at small distance from any of the words of the query, from sysnsets,]

Question 2 (20\%):

a. A search engine has a collection of $7,000,000$ documents with 700 words per document, on average.
(i) 3% What is the minimal length for document IDs for the postings? In bits and in full bytes. Why?

Answer:

$2^{* * 22<7,000,000<2 * * 23}$ so we need 23 bits and 3 bytes.
Document length is irrelevant here!
(ii) 3% If the vocabulary size is 300,000 terms and the average dictionary word length is 10 characters How many bits do you need for pointers if one is to store the dictionary as a single string with pointers to the start of each word (what is the length of each pointer). In bits and in full bytes. Why?
Answer: 300,000 terms of 10 character/bytes on average: 3,000,000. Each pointer points to one of these 3,000,000 characters and for that we need 22 bits and 3 bytes.
(iii) 3% Compute the γ-code and the variable byte code for the decimal number 514. Explain.

Answer: γ-code: $514=512+2=100000000+10=100000010$ Offset $=\mathbf{0 0 0 0 0 0 1 0}$ of length 0 so the γ-code is 11111111000000010
variable byte code: 1000000000000101 [rightmost bit is continuation if 0 , stop if 1] Can be reverse.
(iv) 4% Recover the gap values (in decimal) for the following string representing γ-encoding of a sequence of gaps in a posting list.

111110101001110111111101010101

Answer:

```
111110101001110111111101010101 11010011111101011
\(5215 \quad 26\)
```

(v) 3% Consider a letter bigram index for wildcard queries. Give an example of a string that falsely matches the wildcard query mon*hs if search is simply using a conjunction (ANDing) of bigrams.

Answer: -m, mo, on, + hs, s- \rightarrow moremonths
Has all the bigrams but is not correct.
(vi) 4% Represent the binary number 10101011101010110 as a variable length code with a continuation bit.

Answer:

$10101011101010110 \rightarrow$ divide into 7 bits and add continuation/end bits $\boldsymbol{\rightarrow} 101010111101010100001100$ 1 means continue, 0 means end. [other options possible]

Question 3 (21\%):

1. 10% Shown below is a portion of a positional index in the format:
term: doc1: <position1, position2, . . \gg doc2: <position1, position2, . . \gg etc.
angels: 2: <36,174,252,651>; 4: <12,22,102,432>; 7: <17>;
fools: $2:<1,17,74,222\rangle ; \quad 4:<8,78,108,458>; \quad 7:<3,13,23,193>$;
fear: 2: <87,704,722,901>; 4: <13,43,113,433>; 7: <18,328,528>;
in: $2:\langle 3,37,76,444,851\rangle ; 4:\langle 10,20,110,470,500\rangle ; 7:<5,15,25,195\rangle$;
rush: 2: <2,66,194,321,702>; 4: <9,69,149,429,569>; 7: <4,14,404>;
to: 2: <47,86,234,999>; 4: <14,24,774,944>; 7: <199,319,599,709>;
tread: 2: <57,94,333>; $4:<15,35,155>; \quad 7:<20,320>$;
where: 2: <67,124,393,1001>; 4: <11,41,101,421,431>; 7: <16,36,736>;
Which document(s) if any match each of the following queries, where each expression within quotes is a phrase query?
-3% "fools rush in" -Order important: phrase queries- Answer: \{D2, D4, D7\}
-3% "fools rush in" AND "angels fear to tread" Answer: $\{D 2, D 4, D 7\} \cap\{D 4\}=\{D 4\}$
\{D2, D4, D7\}
\{D4\}
-2\% List the last known 4 words of document 7: Answer: fear[528] \rightarrow to[599] \rightarrow to[709] \rightarrow where[736] (order important, numbers not)
-2% If $|\mathrm{si}|$ denotes the length of string si, show that the edit distance between s 1 and s_{2} is never more than $\max \left(\left|\mathrm{s}_{1}\right|,\left|\mathrm{s}_{2}\right|\right)$.
Answer: we can always replace the characters of the shorter by those of the longer then add the rest.
Or we can always replace the characters of the longer by those of the shorter then delete the rest. In both cases we have the max as the limit.
2. Select the BEST Match: 11\%

$\boldsymbol{?}$	Text		Defines
\mathbf{P}	The vocabulary size of a text can be estimated using	A	Similarity Measure
\mathbf{F}	A metric used to measure the importance of a term in a text document collection	B	Distance Measure
I	\# of changes needed to convert one string into another	C	Tokenization
\mathbf{D}	Levenshtein distance:	D	Insert-Delete-replace one step
\mathbf{L}	Damerau-Levenshtein Distance	E	Insert-Exchange 1 step
\mathbf{K}	Removing most frequent words in the collection	F	IDF
\mathbf{J}	Removing least frequent words in the collection	G	TF
\mathbf{C}	Dividing a string into words	H	Normalization
\mathbf{A}	A measure of how close documents are to each other	I	Levenshtein Distance
\mathbf{M}	Removing word affixes: suffixes and prefixes	J	Typo (error) Cleaning
\mathbf{N}	Number of non-positional postings for a term	K	Stop word removal
		L	Insert-Delete-replace-exchange 1 step
		M	Stemming
		N	DF
		O	Zipf 's Law
		P	Heap's Law

		Q	Recall
		R	Inverted Index

Question 4 (20\%)

1- 4% Assuming Zipf's law with a corpus independent constant $A=0.1$, what is the fewest number of most common words that together account for more than 19% of word occurrences (i.e. the minimum value of m such that at least 17% of word occurrences are one of them most common words).
$P R=0.1 \rightarrow P=0.1 / R$: Top 3 words: $0.1 / 1+0.1 / 2+0.1 / 3=0.1+0.05+0.033 \rightarrow 18.3 \%$ Top 4 words: $0.1 / 1+0.1 / 2$
$+0.1 / 3+01 / 4=0.1+0.05+0.033+0.025 \rightarrow 20.8 \%$ So the min number is 4

2- 4% Assume the $4^{\text {th }}$ most frequent word has frequency 16000 . Can you estimate the number of distinct words (types) in the dictionary? Explain
$P R=0.1 \rightarrow$ at rank 4: $P=16000 / N ;(16000 / N)^{*} 4=0.1 \rightarrow N=640,000$ (total number of Tokens).
Assume the highest ranking term (at rank D where D is the number of types) occurs only once (reasonable assumption for this size): $(1 / \mathrm{N})^{*} \mathrm{D}=0.1=\rightarrow \mathrm{D}=0.1^{*} \mathrm{~N}=64,000$: this is the number of types.

3- 3% Assume the $4^{\text {th }}$ most frequent word has frequency 1600 . Can you estimate the frequency of the most frequent word in the dictionary? Explain.
$F 4=F 1 / 4 ; F 1=F 4 * 4=6400$
4- If we add another collection to this one with similar characteristics: exactly the same number of words and the same vocabulary size (but no duplicate documents): In your opinion:

4-1.3\% What will happen to the new vocabulary size?
By Heap's law the dictionary size should increase: though not double!
4-2. 3% What will happen to the frequency of the 10 most frequent words? Will they change? Remain the same? Explain.

Yes. The frequencies are most likely to increase as they are generally stop words frequent in most documents. Relative frequency need not change, though

5-3\% Prove that text power laws have a linear log-log graph.
Power laws have the form (X,Y: variables; K, Z are constants): $Y=K \cdot X^{Z} \rightarrow \log Y=\log K+Z \cdot \log X=K 1+K 2 \cdot \log X$ Linear in terms of $\log X, \log Y$.

Question $5 \mathbf{(2 1 \%}$) True or False: Place $\sqrt{ }$ in the right square and fill the table at the end (-3% if not filled):
1- \square True \square False Inverted index join (intersection) should start from the query term with highest IDF.
2- \square True \square False With Positional indexing it is possible to recover the original document from the index something not possible for non-positional index.

3- \square True \square False Positional indexing can double or even triple the space needs for an inverted index.
4- \square True \quad False Boolean search requires more advanced skills on part of the user compared to state space model search (Google style search).

5- \quad True $\quad \square$ False The phrase "أيا جارتا ما أنصف الدهر بيننا تعالي أقاسمك الهموم تعالي" has more tokens than types/terms (no pre-processing beyond tokenization).

6- \square True $\quad \square$ False Using skip pointers requires more space for the posting lists (compared to no skips).
7- \square True \square False In the "bag of words" model of the document word order and word co-occurrence patterns are NOT important.

8- \square True \square False Pseudo-relevance feedback is based on user judgement on relevance to revise the query while Relevance feedback blindly assumes that the first n documents are relevant for some n .

9- \square True \square False We can get the number of unique terms in a document from an inverted index.
10- \square True \square False Two documents D1 and D2 both have the word "Palestine" 2 times. D1 and D2 will always have the same rank in any web search.

11- \square True \square False Relevance quality of a document is judged against the terms present in the given query.
12- \square True \quad False We usually prefer cosine similarity over Euclidean distance in vector space models because the former is computationally more efficient.
13- \square True
\square False Two English words with different SOUNDEX codes can NEVER be the same.
14- \square True
False Probabilistic ranking principle is based on the sequential examination assumption.
15- \square True \square False N -gram based bag-of-word retrieval model is used to handle phrase queries.
16- \square True \square False Normalization for NL text results in smaller dictionary size and less ambiguity
17- \square True \square False We can directly get the number of unique terms in a particular document from an inverted index.
18- -
True
\square False
Pseudo-Relevance feedback always increases precision and recall.
19- \square True \square False Precision and recall always trade off with each other: if one increases the other decreases and vice versa.

20- \square True
False Current search engines are good at question answering (for simple questions).
21- \square
True \square False single word index.

Q	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
$\square \mathbf{T}$																					
$\square \mathbf{F}$																					

